

nag_convolution_real (c06ekc)

1. Purpose

nag_convolution_real (c06ekc) calculates the circular convolution or correlation of two real vectors of period n .

2. Specification

```
#include <nag.h>
#include <nagc06.h>

void nag_convolution_real(Nag_VectorOp operation, Integer n, double x[],
                           double y[], NagError *fail)
```

3. Description

This function computes:

if **operation** = **Nag_Convolution**, the discrete convolution of x and y , defined by

$$z_k = \sum_{j=0}^{n-1} x_j y_{k-j} = \sum_{j=0}^{n-1} x_{k-j} y_j;$$

if **operation** = **Nag_Correlation**, the discrete correlation of x and y defined by

$$w_k = \sum_{j=0}^{n-1} x_j y_{k+j}.$$

Here x and y are real vectors, assumed to be periodic, with period n , i.e., $x_j = x_{j \pm n} = x_{j \pm 2n} = \dots$; z and w are then also periodic with period n .

Note: this usage of the terms ‘convolution’ and ‘correlation’ is taken from Brigham (1974). The term ‘convolution’ is sometimes used to denote both these computations.

If \hat{x} , \hat{y} , \hat{z} and \hat{w} are the discrete Fourier transforms of these sequences, i.e.

$$\hat{x}_k = \frac{1}{\sqrt{n}} \sum_{j=0}^{n-1} x_j \exp\left(-i2\pi \frac{jk}{n}\right)$$

etc., then $\hat{z}_k = \sqrt{n} \hat{x}_k \hat{y}_k$ and $\hat{w}_k = \sqrt{n} \bar{\hat{x}}_k \hat{y}_k$ (the bar denoting complex conjugate).

This function calls the same auxiliary functions as **nag_fft_real (c06eac)** and **nag_fft_hermitian (c06ebc)** to compute discrete Fourier transforms, and there are some restrictions on the value of n .

4. Parameters

operation

Input: the computation to be performed:

if **operation** = **Nag_Convolution**, $z_k = \sum_{j=0}^{n-1} x_j y_{k-j}$;

if **operation** = **Nag_Correlation**, $w_k = \sum_{j=0}^{n-1} x_j y_{k+j}$;

Constraint: **operation** = **Nag_Convolution** or **Nag_Correlation**.

n

Input: the number of values, n , in one period of the vectors **x** and **y**.

Constraint: **n** > 1. The largest prime factor of **n** must not exceed 19, and the total number of prime factors of **n**, counting repetitions, must not exceed 20.

x[n]

Input: the elements of one period of the vector x . $x[j]$ must contain x_j , for $j = 0, 1, \dots, n-1$.
 Output: the corresponding elements of the discrete convolution or correlation.

y[n]

Input: the elements of one period of the vector y . $y[j]$ must contain y_j , for $j = 0, 1, \dots, n-1$.
 Output: the discrete Fourier transform of the convolution or correlation returned in the array \mathbf{x} ; the transform is stored in Hermitian form, exactly as described in the document nag_fft_real (c06eac).

fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE_C06_FACTOR_GT

At least one of the prime factors of \mathbf{n} is greater than 19.

NE_C06_TOO_MANY_FACTORS

\mathbf{n} has more than 20 prime factors.

NE_INT_ARG_LT

On entry, \mathbf{n} must not be less than or equal to 1: $\mathbf{n} = \langle \text{value} \rangle$.

NE_BAD_PARAM

On entry, parameter **operation** had an illegal value.

6. Further Comments

The time taken by the function is approximately proportional to $n \log n$, but also depends on the factorization of n . The function is faster than average if the only prime factors are 2, 3 or 5; and fastest of all if n is a power of 2.

The function is particularly slow if n has several unpaired prime factors, i.e., if the ‘square-free’ part of n has several factors.

6.1. Accuracy

The results should be accurate to within a small multiple of the **machine precision**.

6.2. References

Brigham E O (1974) *The Fast Fourier Transform* Prentice-Hall.

7. See Also

nag_fft_real (c06eac)

8. Example

This program reads in the elements of one period of two real vectors x and y and prints their discrete convolution and correlation (as computed by nag_convolution_real). In realistic computations the number of data values would be much larger.

8.1. Program Text

```
/* nag_convolution_real(c06ekc) Example Program
 *
 * Copyright 1990 Numerical Algorithms Group.
 *
 * Mark 1, 1990.
 */
#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagc06.h>
```

```

#define NMAX 64

main()
{
    Integer j, n;
    double xa[NMAX], xb[NMAX], ya[NMAX], yb[NMAX];

    Vprintf("c06ekc Example Program Results\n");
    /* Skip heading in data file */
    Vscanf("%*[^\n]");
    while (scanf("%ld", &n)!=EOF)
        if (n>1 && n<=NMAX)
    {
        for (j = 0; j<n; ++j)
        {
            Vscanf("%lf%lf", &xa[j], &ya[j]);
            xb[j] = xa[j];
            yb[j] = ya[j];
        }
        c06ekc(Nag_Convolution, n, xa, ya, NAGERR_DEFAULT);
        c06ekc(Nag_Correlation, n, xb, yb, NAGERR_DEFAULT);
        Vprintf("\n          Convolution  Correlation\n\n");
        for (j = 0; j<n; ++j)
            Vprintf("%5ld %13.5f %13.5f\n", j, xa[j], xb[j]);
    }
    else
    {
        Vfprintf(stderr, "\n n = %ld which is an invalid value of n.\n", n);
        exit(EXIT_FAILURE);
    }
    exit(EXIT_SUCCESS);
}

```

8.2. Program Data

```

c06ekc Example Program Data
9
    1.00      0.50
    1.00      0.50
    1.00      0.50
    1.00      0.50
    1.00      0.00
    0.00      0.00
    0.00      0.00
    0.00      0.00
    0.00      0.00

```

8.3. Program Results

```
c06ekc Example Program Results
```

	Convolution	Correlation
0	0.50000	2.00000
1	1.00000	1.50000
2	1.50000	1.00000
3	2.00000	0.50000
4	2.00000	0.00000
5	1.50000	0.50000
6	1.00000	1.00000
7	0.50000	1.50000
8	0.00000	2.00000